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NON-REFLECTING BOUNDARY CONDITIONS 
FOR WAVEGUIDES 

A. BENDALI AND PH. GUILLAUME 

ABSTRACT. New non-reflecting boundary conditions are introduced for the 
solution of the Helmholtz equation in a waveguide. These boundary condi- 
tions are perfectly transparent for all propagating modes. They do not require 
the determination of these propagating modes but only their propagation con- 
stants. A quasi-local form of these boundary conditions is well suited as termi- 
nating boundary condition beyond finite element meshes. Related convergence 
properties to the exact solution and optimal error estimates are established. 

1. INTRODUCTION 

We consider time-harmonic scalar waves propagating in a domain extending to 
infinity. The unbounded regions of this domain consist of semi-bounded waveguides. 
For this type of domain, any standard solution procedure is based more or less 
explicitly on the characterization of the guided part of the wave from some special 
solutions called modes of the waveguide. Each mode is expressed in terms of an 
eigenfunction of a related boundary-value problem set on a fixed waveguide cross- 
section S. When the governing equation for the propagation is the Helmholtz 
equation, the eigenfunction problem is relative to the transverse Laplacian in the 
interior of S endowed with the boundary condition involved in the complete domain. 
Truncating the infinite part of the waveguide beyond S leads straightforwardly to 
a boundary condition on S involving these modes. This expression is nothing 
else but an explicit writing of the Dirichlet-to-Neumann operator, which is made 
possible by a separation of variables. This is the so-called Steklov-Poincare or 
Calderon operator. It is well known that it is not generally easy to handle such 
an operator from a numerical standpoint. When dealing with Steklov-Poincare 
operators, the difficulty stems from their so-called non-local character. Here, this 
non-local character comes from the fact that any function with a compact support in 
S is mapped in a function whose support is S. Another difficulty in the numerical 
approximation of the present boundary condition stems from the fact that "the 
propagation in a waveguide can be multimodal and dispersive" [29]. Hence, great 
care has to be paid to obtain effective numerical schemes to approximate the non- 
local boundary condition (cf. [29]). Several methods have already been proposed. 
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The most direct and natural approach consists in using a truncated expansion 
of the trace of the solution on section S in terms of previous eigenfunctions, the 
unknowns therein being the level of each mode, as in the mode-matching methods 
(cf. e.g: [31], [26]). Goldstein [14] and later Lenoir and Tounsi [23] have improved 
this approach. Once the continuous problem is discretized by a finite element 
method, the improvement gained by their method lies in the fact that only nodal 
values remain as degrees of freedom. However, both methods have two flaws. They 
require the determination of the eigenfunctions, and the non-local character of the 
boundary condition remains present in the numerical scheme: all degrees of freedom 
relative to S are coupled together. 

In the context of free wave propagation in unbounded domains, Engquist and 
Majda [12] introduced a local boundary condition to accurately terminate the do- 
main of computation. This condition approximates the theoretical non-local one 
for waves propagating in directions close to the normal to the boundary. A few 
years later, Higdon [20] generalized their approach by introducing a higher order 
boundary operator which can absorb waves propagating in a half space at almost 
all angles of incidence. Higdon's method was adapted later to numerical modeling 
of microstrips in [8]. The approximate boundary condition involves a differential 
operator of order N, the number of modes propagating within the waveguide. The 
idea of considering higher order boundary operators has already been suggested in 
[14] following the pioneered work of Bayliss and Turkel i2] dealing with the con- 
struction of absorbing boundary conditions for the two-dimensional wave equation 
in an exterior domain. Unfortunately, numerical approximation of these boundary 
conditions by a finite difference or finite element scheme is rather unpractical when 
N is greater than two. Recently an absorbing layer which perfectly matches any 
outgoing wave has been introduced by Berenger [5]. Particularly efficient in exte- 
rior domains, this method has been tested successfully for waveguides (cf. [27]). 
However, it seems that this approach fails when the waveguide is fed through pre- 
scribed incident modes, since the layer is designed only to absorb outgoing waves. 
Furthermore, it is not clear that such an approach can be adequately used in the 
frequency domain in conjunction with a finite element approximation, since it does 
not lead to a natural variational formulation. Finally, it was reported recently in 
[32] that the PML method is ineffective in absorbing evanescent waves. 

The boundary condition which we propose uses a rational approximation of the 
Steklov-Poincare operator, involving only the eigenvalues of the transverse Lapla- 
cian. Thus, eigenmodes are needed only if they are used to feed the waveguide or 
if reflection coefficients have to be calculated. This is an important feature of the 
present approach, since modes propagating with the same phase velocity need not 
be distinguished. 

Although Pade approximations of the Steklov-Poincare operator symbol have 
been considered for a long time [12], they have apparently not been used for wave- 
guides yet. Previous derivations of absorbing boundary conditions use an approxi- 
mation of this symbol either locally or globally, depending on the desired properties 
of the resulting scheme [12], [13], [20], [19]. In the present case, the approximation 
process is based rather on an interpolation of this symbol. In another context, a 
similar approach has been adopted by Bayliss and Turkel [2] to write out a hierarchy 
of boundary conditions which annihilates successive terms in the Wilcox expansion 
of any solution to the two-dimensional wave equation in an exterior domain. 
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The boundary condition that we propose is an extension of a Fourier-Robin 
condition valid for one propagating mode, which has been used for a long time 
in electrical engineering calculations [21]. Though non-local, we call it a quasi- 
local boundary condition because the resulting boundary-value system involves only 
local (that is, differential) operators when some adequate auxiliary unknowns join 
the formulation. This idea of considering auxiliary unknowns to deal only with 
differential operators seems to go back to Lindman (cf. [24]). 

The quasi-local boundary condition is expressed in terms of partial derivatives 
of order no more than two. Accordingly, its effective numerical approximation can 
be performed through standard low order finite element schemes. It is perfectly 
transparent for the propagating modes, that is, it has the same effect on the propa- 
gating modes as the exact boundary condition. This property is stronger than low 
reflecting, because incident waves propagate through the boundary without pertur- 
bation. Although some auxiliary functions are introduced, a lumping process makes 
it possible to keep only the nodal values of the solution as unknowns in the dis- 
crete problem. The matrix of the resulting linear system remains sparse everywhere 
and can be obtained through a standard assembly process. Numerical experiments 
confirm that the method is capable of effectively solving various problems in wave- 
guides. They show a very low-level reflection of the incident wave, comparable to 
the one found by using Berenger's perfectly matched layer in the solution of the 
problem by a finite-difference time-domain method [27]. 

A quasi-local boundary condition generating no reflection of the first N propa- 
gating modes can be written by adjusting N coefficients. Introducing an additional 
coefficient permits us to control the stability of the related boundary-value problem. 
As a result, we will be able to prove that the discrete problem is uniquely solvable 
and to give optimal error estimates as well. However, numerical experiments in- 
dicate that the quasi-local condition with only N coefficients, which results in a 
reduction of one auxiliary unknown function, is almost as accurate as the condition 
with N + 1 coefficients, a feature which will be studied elsewhere. Similarly, we 
found that the method still gives accurate results when the quasi-local boundary 
condition is designed for N propagating or evanescent modes. Numerical experi- 
ments show that taking non-propagating modes into account results in substantially 
reducing the amount of calculation, since only a small part of the waveguide is suf- 
ficient to get great accuracy. Hence, even in the most usual case where there is 
only one propagating mode, the quasi-local boundary condition can be advanta- 
geously used to improve the accuracy without a significant growth in the amount 
of calculation. 

The outline of this paper is as follows. The mathematical background is in- 
troduced in section 2. A general boundary condition generating no reflection for 
propagating modes is studied in section 3, and exponential convergence to the ex- 
act solution is proved. Stability and regularity results are given in section 4. The 
construction of the quasi-local boundary condition is detailed in section 5. Next 
the convergence of the finite-element method is established. In a final section, we 
give an account of some numerical experiments. 

2. GENERAL FRAMEWORK 

In this section, a model boundary-value problem involving the Helmholtz equa- 
tion in a perturbed semi-infinite waveguide Q' c IR d is stated. The boundary 
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FIGURE 1. A semi-infinite waveguide 

condition which we consider is either the Dirichlet or the Neumann boundary con- 
dition, since these cases provide the most representative situations for this class 
of problems. Junctions of several waveguides could be treated in the same way. 
More general (scalar) operators and boundary conditions could be treated by sim- 
ply adapting the notation, provided that they rely upon a self-adjoint operator in 
L 2 (Q/) 

First, some notation is introduced. Then some known results on the exact non- 
reflecting condition are recalled. 

2.1. Notation. The geometry of a semi-infinite perturbed waveguide (see figure 
1) is described through the following data: 

- a number v > 0, 
- an open bounded domain S of Rd-l, d = 2, 3, whose boundary OS is of class 

coo , 
- the cylinder G = -v, +oo[ xS, 
- an open bounded set Q of Rd such that 

Qn{(x,y) ERxRd-l; v<x}= [-v,0[ xS. 

The perturbed semi-finite waveguide then can be described through Q' Q U G. 
Its closure Q' is assumed to be a C??-manifold imbedded in Rd whose boundary is 
denoted by F. n is the unit normal to F outwardly directed to Q', and An is the 
related normal derivative to r. 

A generic point in Q' is designated by (x, y) with x E JR and y E R 
Standard notation and function spaces from the theory of partial differential 

equations are used without further comment (cf. e.g., [25], [30], [9]). 
We denote by An, n > 1, the eigenvalues of the transverse Laplacian relative to 

either the Dirichlet or the Neumann boundary condition on oS. The eigenvalues 
are counted with their order of multiplicity and increasingly ordered, 0 < A1 < A2 < 

... < An < ... . in such a way that each of them corresponds to an eigenfunction 

D~~~~ -Ae=A-~iS (n1 

(1) 1 /i\~~-S en = A 2 
en in S, 

len = O or anen = 0Oon AS, 
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and {en}n>1 defines an orthonormal Hilbert basis of L2 (S). We denote by As = 

_dl 092 the transverse Laplacian relative to a function defined on S. 
Let k > 0 be the wavenumber involved in the problem. The constant of propa- 

gation k7n related to the nth mode is given by 

kn = Vk2-A, 
the determination of the square root being fixed by -/ = i. We assume that k 
does not correspond to a cut-off frequency, that is, 

k7n 7 o, for n > 1. 

The guided modes of the waveguide G then can be made explicit by 

En (X,y) = en(y) eiknx 

Waves E- represent incident or incoming waves whereas waves E+ are outgoing 
waves. 

The number N of modes which propagate without attenuation is defined through 
the following relations: 

kn = k2-A> 0 1 < n < N, 

ik7n = - A2- k2< 0 n > N. 

We assume that the perturbed semi-bounded waveguide is loaded by a localized 
distribution of sources modeled by a given function f in L2(Q) as well as by an 
incident wave 

N 

= u, EK* U=E Un En. 
n=1 

The incident wave is completely defined by the respective levels u" of the incident 
modes E-. Here, we have considered an incident wave to show how to deal with 
the problem in the case of a junction of waveguides. 

2.2. Function spaces. For s E IR, the norm of the Sobolev space HS(Q) is 
denoted by 1. 1s Q. For any open region 0 of Q', we denote by V(0) either 
{u E H1(0); Ulr = 0} or H1(0), according to whether the Dirichlet or Neumann 
boundary condition is considered. The associate Frechet space V10c is 

V1OC(O) = {u E L2(Q'); o u E V (0), Vf E ID(Rd)}. 

The Fourier coefficients un of a function u E L2(S) are defined by 

un = u (y) en (y) dy. 

For any real number s > 0, the following Hilbert space XS and its spectral norm 

x = {uEL2(S); EZAun12<oo}, 
nA n2>1 

Xs= Z A| Un 
n>1 

play a fundamental role. It follows from interpolation theory [25], [7] that for 0 < 
s < 1/2 the space X' coincides with the Sobolev space HS(S). For 1/2 < s < 1 the 
identification of these spaces depends on the boundary condition being considered 
on F. For the Dirichlet boundary condition, XS = Ho (S), that is, the closure 
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of D(S) in HS(S) when 1/2 < s < 1, and X1/2 = Ho/2(S), a strict subspace of 
H112(S) whose elements vanish at the boundary of S in some special sense. The 
case of a Neumann boundary condition simply leads to Xs = HS(S) (cf. [25] and 
[16]). 

The dual space of XS, denoted by X-', can be identified with the one consisting 
of all sequences {Un}n>1 with complex coefficients such that 

2ux- 12ElA n < OC). 
n>1 

Using the characterization of the spectral spaces above, we can easily show that 
the usual trace operator u(x, ) is in addition a continuous map from V(Q) into 
X1/2 for -v < x < 0 and u in H1(Q). Moreover, as we will see below in a more 
general setting, this mapping is surjective and has a continuous right inverse. 

2.3. Exact bounded domain formulation. Every solution u E V1c(G) of the 
equation 

-Au - k2u = 0 

satisfying the boundary condition considered on F has a unique decomposition 

u(x, y) = u (x, y) + u- (x, y), 

U(x,y) = E n n (x) y)X 
n>1 

u- (x,y) = UnE (x) y) 
n>1 

with 

Un= u(O, y)en(y) dy = u+ + u. 

General results on regularity up to the boundary of elliptic boundary-value problems 
(cf. e.g., [1], [25], etc.) show that this solution is C?? in ]-v, oo[ x S. The outgoing 
part u+ satisfies the boundary condition on S 

Ou+ (0,.) = iEkn un en. 

n>1 

This suggests that we should consider the pseudodifferential operator of order one 

K : X112 ,X-112 

E Unen i E knUnen. 

n>1 n>1 

F'urthermore, since k72 7 0 for n> 1 and k 
n iAn, K is indeed an isomorphism 

from Xs onto XS-l for all real numbers s. 
Then the problem to be solved can be stated as follows: 

- -/u-k2u = f in Q, 
(2) u= 0or ou=0 onf, 

A nu -Ku = AO ui-Ku' on So, 

where f and ui are respectively the given localized sources and incident wave. 
It has been proved in [14] that this problem is well-posed except for an at most 

countable set A of values of k2 with no finite accumulation point. This set A, which 
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may be empty, is the point spectrum of the operator acting in L2 (Q') given by 
-A associated with the considered boundary condition on F [22]. We will always 
assume in this paper that k2 , A without further comment. Hence problem (2) is 
well-posed. Below, we will more precisely state the stability relative to the data. 

3. THE APPROXIMATE BOUNDARY CONDITIONS 

The boundary condition in problem (2) needs the computation of the eigenfunc- 
tions en to be made explicit. We introduce a new class of boundary conditions 
which need only the knowledge of some of the eigenvalues An. These boundary 
conditions constitute an approximation of the exact one in that they leave each 
propagating mode unchanged. We give precise details about this approximation by 
estimating the error which affects the solution to the initial problem. Finally, we 
see that the approximate boundary conditions can take into account incident waves 
just as the exact one does. 

Let R be a function defined for t > 0 satisfying 

ftn = R(A 2) > 0 Vn > 1, 
(3) lim R(t) a > 0. t t-+ +oo t 

The function R plays the role of a symbol. Exactly as for the above operator K, 
we can associate to the latter a pseudodifferential operator T = R(-As) of order 
2 through 

T:X1 X-1 

EUnCn I) i E tnUlnCnl 

n>1 n>1 

Again as for the operator K, T is indeed an isomorphism from XS onto X,-2 for 
all s, since tn 7& 0 for n > 1 and t72 aAS. 

For -v < L, we denote by SL the cross-section of the waveguide {(L, y); y E SI, 
and for 0 < L, we denote by QL the open set QL = Q U ([0, L[ xS). When it is 
sufficiently clear from the context, we do not distinguish between So and S. 

The problem with the approximate boundary condition can now be stated as 
follows: find u in H2 (QL) such that 

( -Au-k2u - f in QL, 

(4) u = O or 0,,u = on F, 

,u n- Tu = 0nu - Tit' on SL. 

Whenever there is no risk of confusion, we do not distinguish between a function 
or a distribution defined in SL and its identification, when this is possible, to an 
element of X'. 

Remark. If the symbol R is chosen such that R(A)2 kn for 1 < n < N, then the 
boundary condition of (4) is transparent for all propagating modes, since Onu-Tu 
Onu - Ku for any solution it in the form u = EN U+E+ + it'. 

Let VL be the space of v E V(QL) such that VISL E X1 equipped with the norm 

IIVL V (I IV (QL) +I l,Y 

2 

Problem (4) has the following variational formulation: find it C VL such that 



130 A. BENDALI AND PH. GUILLAUME 

with 

aL(u,v) = j (Vu.Vv - k2uv) dxdy-(Tu,v)-1j, 

IL(V) = J Jf v dxdyS+ L(0nu -Tui)v dy, 
QL SL 

where the brackets (, ) denote the duality product between X - and X'. 
The following theorem gives the general framework which permits us to analyze 

the stability of the problem relative to the boundary conditions which are intro- 
duced, and to show that the error resulting from these approximate conditions 
decays exponentially as L -> +oo. 

Theorem 3.1. Problem (4) has one and only one solution. Let UL be the solution 
to problem (4) and UE be that of problem (2). Assume that R(A2) = k, for 1 < 
n < N; then there exist two positive constants c and p, independent of the data f 
and u' and of L, such that 

VUE - UL 1,Q < ceP (f o,Q + u x1/2) 

Proof. Since tn > 0 for n > 1, and tn _ aAn, we readily get the existence of a 
positive constant c such that 

-i (Tu, u) >1 1 = c tn A2 >xi ? E An 2 = C|x1 
n>1 n>1 

and, as a consequence, 

taL(u,u) + (1 + k 2) Iu2 dxdy > CIU1L 

for each u in VL. Well-posedness of problem (4) is thus a consequence of the 
PRedholm alternative. Let u be such a solution with f = 0 and ua = 0. Since the 
imaginary part 1m(aL(U, u)) = - (Tu, u)- 1I = 0, the traces UISL and D9u are zero 
on SL. Extending u by 0 beyond SL, we readily obtain that the extension is still 
a solution to the Helmholtz equation in Q'. Since the function obtained is analytic 
therein, it must vanish. 

To establish the error estimate, we expand the solution in G as 

(5) VIL - = Z(U +ne %kx + (Ua7 - ua) eknk)e(y) 

n>1 

with ua - 0 for n > N. Our aim is to compare the restriction (UL)jQ with the 
solution u to problem (2). The details being similar to those given in [18], we limit 
ourselves here only to the main steps in the proof. 

Taking the derivative relatively to x in (5) and using the boundary condition of 
problem (4), we get the following expressions for the normal derivative on SL: 

09n(UL 
- ) = Zikn (U re f - (-n -Ua) ein )en(Y), 

n>1 

= > itn(ULane n + ( Ln- Un) e lL)en(y). 
n>1 

Hence, 

(kn - tn)uanekn = (kn + tn) (UL- - a;) eiknL Vn > 1. 
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Defining 

kn- 1 - dne2iknL 
dn = 

kn tnand rn= kn Id2ikn L 

we obtain the following relation on the cross-section So (i.e. for L = 0): 

9x(UL - Ui) = E irn(U+n + (ULn -n))en(Y) 
n>1 

Hence, the restriction (UL)IQ of UL to the open set Q, also denoted by UL for 
simplicity, satisfies 

-AUL - k2uL = f in Q, 
UL= O or 0nUL = O on r, 

&nUL -TLUL = nU - TLu' on SO, 
where TL is the continuous operator 

TL X12 x-112 

EUnen i:E rnUnen- 

n>1 n>1 

The key point in the proof is the following. Since R(A2) = kn for 1 < n < N, we 
have Idnl = O for I < n < N and Idn = I for n > N. Hence, rn= knfor 1 < n < N 
and 

(K- TL)u = i > kn -de Unken 1 ? dne2ikn Lun 
n>N 

which yields 

2e2ikN+1 L 

IK - TLIL(X/2, x-1/2) < c1 - e2ikN+?Lv 

c being a constant independent of N and L. 
As usual in partial differential equation theory, c will stand for any constant. 
Since problem (2) is well posed and invertible elements of a Banach algebra 

constitute an open set, the desired estimate holds with p = -2ikN+l > 0. C 

4. STABILITY AND REGULARITY ESTIMATES 

In this section, we state the stability and regularity results which will be used in 
the next one. 

It will be convenient to suppose here that the solution to problem (4) is suffi- 
ciently close to the solution to problem (2) for L = 0. This holds for a sufficiently 
large v. Numerical computations show that a distance of one wavelength is enough. 

4.1. Stability. We will use the following technical lemma in several instances. 
Its proof is straightforward from standard techniques of interpolation theory and 
square integrable functions valued in Hilbert spaces (cf. [25] and [16]), and hence 
is omitted. 

Lemma 4.1. For m -1 or m = 2, the usual trace operator given for sufficiently 
smooth functions v by vis is bounded from Hm(Q) n V(Q) into Xm-l/2 and has a 
continuous right inverse explicitly given for v = En>1 Vnen c Xm-l/2 by 

v = f :VnEn) 

n>1 
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where (o is a fixed element of C? (Q) such that so = 1 near S and supp s C ]-V, 0] x S. 
Moreover, this explicit mapping is also continuous from Xml-l/2 into H'(Q) for 
all positive integers m. Finally, the trace given for sufficiently smooth functions v 
by (D%v) Is = (Dxv) Is defines a bounded mapping from H2 (Q) n V(Q) into XI/2. 

Remark. For m > 2, the trace vjs of v E Hm(Q) n V(Q) is not necessarily in 
xml/2. Some additional boundary conditions must be fulfilled by v, e.g. Asv = 0 
on AS. 

To establish the stability of the finite element scheme, we need the following 
regularity result for the solution to the problem with the exact boundary condition, 
but with data f whose support extends up to S and data g in X1/2. 

Lemma 4.2. Let f E L2(Q) and g E X1/2 be given. The problem 

-Au-k2zu - f in Q, 
(6) u = O or D%u = O on F, 

u DU-Ku = g on S, 

has one and only one solution belonging to H2 (Q). Moreover, there exists a constant 
c independent of f and g such that 

ZU12,Q < C (If o,Q + YX1/2). 

Proof. Using notation similar to that of lemma 4.1, we set 

g 9n 
v = so Enkj 

n>1 2ikn 

Since kn iAn, this lemma yields v E H2(Q) with 

(7) IV12,Q < C IgIxl/2 

Observing that o%v - Kv = g and replacing u by u - v, we prove the lemma for 
g = 0. 

The Fredholmn alternative insures that problem (6) is uniquely solvable in V(Q). 
Extending f by zero and u by En> I (fS U(O, y) en (y) dy) E+ beyond S, we find 

that the extension satisfies a homogeneous elliptic boundary-value problem in Q'. 
The end of the proof follows from standard estimates up to the boundary for regular 
elliptic boundary-value problems (cf. e.g., [1], [25], etc.). O 

Finally, we establish a similar regularity result for the solution to the problem 
related to the approximate boundary condition. 

Proposition 4.3. As in lemma 4.2, let f E L2(Q) and g E X112 be given. The 
solution u E Vo of the problem 

-A/u--k2U = f in Q, 
(8) u = O or aou = O on F, 

D%au-Tu = g on S, 

is in H2(Q) with uls C x5/2 and satisfies the estimate 

IU12,Q + lUIX5/2 < c(If o,Q + Ig xl/2) 

with a constant c independent of f and g. 



NON-REFLECTING BOUNDARY CONDITIONS FOR WAVEGUIDES 133 

Proof. Existence and uniqueness of a solution in Vo have already been established 
in theorem 3.1. Let ul be the solution to (6). From lemma 4.2, ul belongs to H2(Q) 
and thus its trace on S is in X3/2. 

The function v = u- u in turn is a solution to problem (8) with f = 0 and 
g (K - T)ui, denoted by h for clarity. Note that h is now in X-1/2 and satisfies 

Ih X-1/2 < CIUJIx3/2 < CIU112,Q. Since T is an isomorphism from X' onto XS-2 for 
each s E R and Tv = nv- h, it follows that 

IVIx3/2 < C(I9nVIx-1/2 + Ih X-1/2). 

FRom Av + k2v = 0 and the definition of traces by transposition methods, we get 
the bound 10vnxI-1/2 < C v 1,Q. Since problem (8) is well-posed, we get 

(9) IvIl,Q < clhlx-l < clhlx-1/2 < CIU112,Q. 

Gathering these inequalities and using lemma 4.1, we arrive at 

(10) IVIX3/2 < CIU1 12,Q 

The function v E V(Q) is a solution to 

{Av? kk2v=0 inQ, 

v=0or0nv=0 on]F, 
VIS EEX3/2. 

Using lemma 4.1, we can reduce the problem as above to the one with a homo- 
geneous Dirichlet condition on S and a right-hand side of the partial differential 
equation in L2 (Q). The geometry of the cross-section of the waveguide permits 
us to extend the solution to an odd function relative to the variable x. Standard 
elliptic estimates up to the boundary then give the bound 

IU12,Q < C (If I,OQ + YglX1/2). 

Furthermore, since T is a pseudodifferential operator of order 2, there is an extra 
regularity for the trace uls which results from the inequality 

znU-g Xl/2 = ITuX1/2=Z A,t Ln > AYZEn ZUn 
n>1 n>1 

with a constant -y > 0 independent of f and g. The end of the proof is then a direct 

consequence of this last estimate. LI 

4.2. Regularity of the solution. We will see now that the curvilinear edge re- 

sulting from the truncation of the waveguide does not generate any flaw in the 

regularity properties of the solution to the problem related to the approximate 

boundary condition as long as the support of the localized sources f does not ex- 

tend up to the cross-section S. It is clear that this assumption is not restrictive for 

the class of problems which are considered. 

Proposition 4.4. Assume that R(A2) - kn for 1 < n < N. Let u c Vo be 
a solution to problem (8). For any integer m > O, if f E Hm(Q) is such that 
suppf C (XIy) c ) Rd; x < -v} and g c Xm-1/2 then u c Hm+2(Q) and the 
estimate 

(11) lUlm+2,Q < c(f Im,Q + Yg|Xm-1/2) 



134 A. BENDALI AND PH. GUILLAUME 

holds with a constant c independent of f and of g. Moreover, regardless of the 
regularity of f, uls is in Xm+3/2 as soon as g is in Xm-1/2, and we have the bound 

|UIXm+3/2 < C (f IO,Q + YgXmX-1/2), 

again with a constant c independent of f and g. 

Proof. Let p c C??(Q) be such that p(x,y) = 1 on ]-v/2, O[ x S and suppp C 
[-V,O] x S. Set 

gn n 

n>1 i(kn+tn) 

as in lemma 4.1. The function v satisfies the boundary condition Dnv - Tv = g. 
Since kn + tn a A we immediately get 

(12) IVIX,+3/2 < C IgIxm-1/2 

with a constant c independent of g. 
It follows from lemma 4.1 that v E Hm+2(Q) with the bound 

(13) lVlm+2,Q < c glxm-1/21 

again with a constant c independent of g. 
Now, consider the function w : u- v. It is the solution to 

-Aw-k2w = fi in Q, 
(14) w = O or Dnw =O on F, 

D9,,w-Tw=O onS, 

where fi = f + Av + k2v c Hm(Q). Moreover, according to the definition of f 
and v, we have suppfi C {(x,y) c Rd; X <- v/2}. Hence we can decompose w 
for -v/2 < x < 0 as 

(15) w = w+ + w- = w+E + w- ? 
n>1 

Thus the boundary condition satisfied by w on S can be rewritten as 

,w- Kw = ow- -Kw-. 

Goldstein [14] has established that the bound 

(16) WlWm+2,Q < c(If1Im,Q + |w |Xm+3/2) 

holds with a constant c independent of fi and w-. It remains to give an estimate 
of |w |Xm+3/2 

Taking the normal derivative in (15) and using the boundary condition in (14), 
we obtain the relation 

9 = E ikn(Wn+ - w)en = E itn(w4+ + w)en, 
n>1 n>1 

which in turn yields 

(17) wn- - dnWn+ for n > 1, 

with dn := (kn - tn)/(kn + tn). Note that dn = 0 for 1 < n < N, since then 
tn= R(A) = kn, and that Idnl = 1 for n > N because then both tn and ikn are 
real. 
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The function w is of class C? on ]-v/2, 0[ x S, and for each fixed x in ]-v/2, 0[ 
we can write 

w (X, y) E Wn (X) en (y). 
n>1 

Using (15) and (17), we obtain for n > N 

(18) Wn(x) = w+ eiknx +w-e-iknx 

(19) = djI eiknX(1 ? de e2iknx)w. 

Hence, we can get the following bound: 

leiknXw2 ? 1< -2ikN?1x wn(x) for n > 1. 

The sequence iknX is positive and increasing for n > N with kn iAn. For each 
s > 0, we have lim1,, A2se-2iknx = 0. Thus, using (19) and the fact that trace 
operator is bounded from H1(Q) into L2(Sx), we can write 

A2s 
ZE e2k?X eiknxw 2 

n>1 

? c(x, s, N) E IWn(X) 2 = c(x, s, N)IwIs. Xo 
n>1 

? c(x, s, N) jW Q. 

Applying theorem 3.1 to problem (14), we get the estimate IW1,Q + lwslx1< 
C If, Io,Q, which combined with (12) and in view of the expression of fi yields 

(20) W Xs < Clfllo,Q <c(IfIo,Q +IV2,Q) <c(IfIo,Q? + x-1/2)1 

Substituting (20) in (16) and taking s = m + 3/2 , we obtain 

lUlm+2,Q < c( 
fIm,Q + Ylgxm-1/2) 

The second part of the proposition has already been obtained through the previous 
steps (12), (15), (17) and (20). LI 

Remark. It is well-known (cf. e.g., [15]) that the data relative to boundary condi- 
tions of different type must fulfill certain compatibility conditions for the related 
solution to an elliptic boundary-value problem in order to be of optimal regularity. 
Actually, these compatibility conditions are here implicit from the fact that the 
data g is taken in Xm-1/2. 

5. THE QUASI-LOCAL BOUNDARY CONDITION 

Now, we come to the main goal of this paper. We show how appropriate choices 
of the function R permit us to overcome the difficulty of solving problem (2) with 
a non-local boundary condition on S. Actually, the resulting boundary condition 
remains non-local, but the addition of some unknown functions on S leads to a prob- 
lem whose formulation involves only local (that is, differential) operators. When 
only one unknown function is involved, we will see that a lumping technique permits 
us to eliminate the additional unknown at the assembly process. 

It is worth noting that the system to be solved depends on the wave number 
k through a multiplicative term k2 and through the coefficients of a small system 
described below. As a result, the computation of higher order derivatives of the 
solution relative to k as described in [18] can be easily implemented. 
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5.1. The effective finite-element method. For convenience, we now change the 
numbering of the eigenvalues An, counting each element of the set {An; n > 1} only 
once, i.e., 0 < A1 < A2 < ... < An < *-- . As a result, the construction of the 
approximate boundary condition has the advantage of not requiring separation of 
modes which propagate with the same phase velocity, nor even determining them. 

The rational function R 
N-1 

R(t) = at+b?+ E c' 
J=1 j ? 

depends on N + 1 real parameters. It follows from classical Hermite interpolation 
theory that the conditions 

(21) {~~~ R(A2) =kn for 1< n< N, 
(21) R{ R(A2 

0 

uniquely determine R. The choice of the poles is arbitrary. The above analysis has 
shown that the first N equations are necessary for the consistency of the resulting 
boundary-value problem with the problem to be solved. The equation R'(A 2) 0 ? 
is added to carry out the requirement that R(t) be positive for t > A 2. For N =2 
and N = 3 some simple manipulations show that a > 0 and R(t) > 0 for all t > A . 
We have not been able to prove that these last properties are still true for the next 
values of N. However, we have numerically determined the function R for N = 4, 5 
in many cases, the values of An being randomly chosen. We have never observed 
that either a > 0 or R(t) > 0 for t > A2 fails to be true. So we conjecture that these 
inequalities are valid for each N and take them as assumptions in what follows. 

For v c X1, we can write Tv implicitly with only local operators as 

N-i 

Tv =i E R(A2)vnen =iR(-As)v = i(-aAsv + bv + E cjgj), 
n>1 j=l 

-Asg9 + jgj = v in S 

g3 = O or &gyj = O on OS, 

through N - 1 auxiliary functions gj, 1 < j < N - 1. Hence for solving problem 
(2), we are led to solve the problem 

( -Au-k2u = O in Q, 
u u=OorDnu=O onI, 

(22) ~~~%u- i(-aAsu ? bu ? EN'-j1 cigj) o (22) i= on S, 

| -/\g; + jg - u = -ui in S, 
g3 = O or OnDg9 = O on OS. 

The following result is a straightforward consequence of proposition 4.4. 

Proposition 5.1. Problem (22) is uniquely solvable, and u is the solution to prob- 
lem (2) if and only if (u,gl,... ,9N-1) is a solution to problem (22). Moreover, if 
f c L2(Q) with supp f C { (x, y) c RJd; x < -v}, then the functions gj are of class 
C?? on S. 

For solving the discrete problem, we use the following variational formulation. 
Let V = Vo x {X1}N-1 and denote by y := (u,g) a generic element of V with 



NON-REFLECTING BOUNDARY CONDITIONS FOR WAVEGUIDES 137 

g = (91,-- , 9N-1)- The space V is equipped with the norm 

/ = ? N-1 \ 1/2 

IYIV =IIU12O + E IgjI211 
j=1 

Then, y E V is a solution to problem (22) if and only if 

a(y, z) = I (z), Vz = (v, s) c V, 

where 
N-i 

a(y, z) = J (Vu.Vv - k 2UV ) dxdy - if aVsu.Vsv + buv + E CjNjV dy 
j=i 

N-i 

+ ? VSgjVss8 + jgjSj - us dy, 
*_1 

2_1 ~ ~ ~ ~~~~~~~~= 

Let Th be a mesh of Q in the general meaning of usual approximations by a finite 
element method [10]. The trace of this mesh on S gives a mesh of the (d-1)-domain. 
Similarly, when designing a conforming nodal finite-element method of order m to 
approximate H1(Q), we define a similar method giving an approximation of the 
space H1 (S). Taking into account the Dirichlet condition when it is involved, we 
can define Vh c V, a finite-element space of order m, and consider the following 
approximation of problem (22): find Yh = (Uh, gh) c Vh such that 

(23) a(yh, Zh) = l(Zh) VZh = (Vh, Sh) C Vh. 

As usual for simplicity, we do not take into account the consistency error coming 
from the approximation of the geometry. However, this aspect does not lead to any 
specific difficulty and could be treated by the usual techniques (see e.g., [4] for a 
similar situation) and Bernardi's general results [6]. 

The other result of this paper establishes that the discrete problem (23) is 
uniquely solvable if h is taken sufficiently small, and gives an error estimate for 
the solution which is effectively calculated. 

Theorem 5.2. Let y be the solution to problem (22). There exists h* > 0 such 
that for 0 < h < h*, problem (23) has a unique solution Yh c Vh satisfying 

Y - Yh V < chi (If Im-1,Q + |uiIXm+3/2) 

with a constant c independent of f and u'. 

Proof. General results on the numerical analysis of conforming approximations of 
variational problems by a finite-element method (cf., e.g., [10], [28], and for instance 
[4] for the case of the approximation of a Fredholm alternative), and the above 
propositions 4.3 and 4.4 reduce the proof to checking that any solution y = (u, g) c 
V to the coercive problem 

{-u + u = f in Q, 
u=0orDou=0 onE, 
%u? + iaAsu = fo on S, 
-Ag3\ =f on S, 
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satisfies the estimates 

IU12,Q + UX2 ? c(fjo,?Q +folxl/2), 

N-i N-1 

E j3 JX2 < C E Z f jlxo, 
j=1 j=1 

with a constant c independent of the data (f, {fj}N-1). Proposition 4.3 gives the 
first estimate by taking Tu :=-iaAsu and substituting -1 for k2. Observe that 
T in proposition 4.3 was independent of k. Estimates up to the boundary for the 
solution to regular elliptic boundary-value problems complete the proof. LI 

Abandoning now the assumption L = 0, which is simply a convenient notation, 
we can summarize the results of this paper as follows. 

Theorem 5.3. Let UE be the solution to problem (2), UL the solution to problem 
(4), and Uh,L the finite-element solution for an approximation of order m > 1. 
There exist four positive constants h*, c, p and CL, independent of f in H'- (Q), 
of u2 and of 0 < h < h*, such that 

UE - Uhll, < (C e P+ CLhm)(If lml,Q + lu |Xm+3/2) 

Remark. The way that the constant CL depends on L seems to be a difficult ques- 
tion. However, in view of the usual properties of coercive problems and of the fact 
that the usual approximations of the Helmholtz equation give sufficient accuracy 
with a fixed number of degrees of freedom by wavelength, it is reasonable to assume 
that CL grows at most like L. The previous error estimate suggests taking the mesh 
length h of order exp(-pL/m). Numerical results presented in table 1 (see Section 
5.3) confirm this observation. 

5.2. Implementation of the finite-element method. For simplicity, we sup- 
pose in this section that only two modes are propagating, i.e., in the previous 
notation N = 2. We show that the additional unknown can be eliminated through 
a lumping technique which preserves the sparsity of the matrix and can be imple- 
mented at the element level. The same reduction can be applied when considering 
more propagating modes, but then with a less obvious advantage. 

Without any change in the solution, we slightly modify the variational formu- 
lation of the discrete problem in such a way that the matrix of the final linear 
system to be solved will be symmetric although not Hermitian. The finite element 
unknown Yh = (uh,gh) c Vh then reads 

(24) a(Yh, Zh) = l(Zh), VZh = (Vh, Sh) c Vh, 

with the following notation: 

a(y, z) b(u, v) + d(v, g) + d(u, s) + c(g, s), 

b(u, v) j (Vu.Vv - k2u v) dx dy - i j (aVsu.Vsv + buv) dy, 

d(v,g) -ic gvdy, 

c(g, s) = ic (Vsg.Vss + gs) dy, 

l(z) = fv dxdy + /(jnuv - i(aVsu'.Vsv + buav) - icubs) dy. 
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Let {ei }ie be the nodal basis of the finite element-space Vo [10]. Using the 
obvious notation, we decompose the set of indices I as I = IQ U Is. For i C IS, 
we denote by si = (ei)Is the trace of ei on S. Standard properties of a nodal finite 
element method show that {si}iels is a nodal finite element approximation Xl of 
X1 with the same order of accuracy as Vo is of Vo. As a result, the functions 

Ei = (ei,0), i c I, 

Si = (0, Si), i C IS, 

constitute a basis of Vh Vo x Xh. 
Any element of Vh can be written 

(Uh,gh) = S ujEj + 1 gjSj 
jeI jEIs 

Since we are only interested in the nodal values uj, we consider another basis of Vh 
which avoids the computation of the coefficients gj. 

By the standard lumping process, we express the bilinear form d in an approx- 
imate way by a diagonal matrix as follows: d(ej, si) = 6ijdi, where &ij is the 
Kronecker symbol. Let Ils {i c Is; di = 0?}, IQ = I\ IS, and cij = c(sj, si). 
Define S,' = Si for i c Is, E,' = E, for i C IQ and 

(25) l CkEk-Si, for i E I'. 

Observe that Cik/dk 0 whenever nodes of respective index i and k do not belong 
to the same element. 

Rewriting (Uh, gh) in this basis as 

(Uh,gh) u AE + E 5 /S/ 
jEI jEIs 

and using the relations 

a(S> E') = 0, for (i,j) c I x Is, 

which are a consequence of the lumping technique, we get the reduced linear system 

(26) 5a(E, E') u- a((Uh, gh), Ej') = I(Ei'), for i c I, 
jEI 

where the unknowns g' have been eliminated. 
The coefficients of the matrix of system (26) are given by 

aij = a((e, O), (ei, 0)) for (i, j) E IQ X IQ, 

aij = a((e0jV), ( , Cik/dk ek,-SM)) for (i, j) E IQ x I'S 

aij = a(( E Cjk/dk ek, -sj), (E Cik/dk ek, -Si)) for (i, j) E Is x Is. 
keII kEII 

As already mentioned above, only a few terms in EkeII Ckj/dk ek are nonzero. 
The remaining terms are easy to identify and to form from the connectivity of the 
mesh through the assembly process at the element level. Hence, the matrix not 
only remains sparse but can also be assembled in the usual way. This explains why 
we have called our boundary condition quasi-local. 
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Once the unknowns u' have been computed, the coefficients uj are recovered by 

Uj = u', for j c I, and uj = ZkeI (Ckj/dj)u4, for j C Is. 

Remark. Usually, the lumping process is given by an approximate quadrature for- 
mula on each element. This process can be seen as a nonconforming way to deal 
with the exact discrete equations [11] and, at least for the coercive case, can be 
tackled through a consistency estimate of the resulting approximation. In [11], it 
is also established that in the coercive case the order of convergence is unaltered as 
long as the quadrature formula exactly integrates polynomials of degree < 2m - 2 
for locally polynomial shape functions of degree < m. This restricts m to be < 2. 
Finally, as is shown in [3] in a more difficult situation, the estimates related to 
the consistency error for the coercive case remain valid for a Fredholm alternative 
obtained through compact perturbation for any sufficiently small meshsize h. 

5.3. Numerical results. 

5.3.1. A first example. The first example deals with a two-dimensional semi-infinite 
waveguide 

Q'R+x ]0, 7r 

with a homogeneous Neumann boundary condition along the boundary. 
The eigenvalues are given explicitly here by 

A,, = (n -1)2 for n > 1. 
Since the case where only one mode is propagating is well known (cf. e.g., [21]), 
we consider here a wavenumber k = 1.3. In this situation, there are two modes 
which propagate. The waveguide is loaded by a point source located at (0, 37r/4) 
modeling a coaxial loading (Fig. 2). 

The computational domain is denoted by QL ]0, L[ x ]O, 7r[. The reference 
solution UE is the restriction to Q := Q, of the solution computed on Q4,. The 
solution computed on QL for L > 7r is denoted by UL. The contour curves of IuX, 
IU37/21 and IU2,1 are shown on Fig. 2. The left column corresponds to h = 7r/32 
and the right one to h = 7r/48. 

The relative error in decibels, 20 log10(uL - UEIOO,Q-/UEIo,Q), is given in ta- 
ble 1 for different values of L and of the mesh length h. The results confirm the 
exponential decay of the error with respect to L as it is theoretically predicted 
in theorem 3.1. Moreover, the value of the reflected energy due to the terminat- 
ing boundary condition is of the same order as the one resulting from using the 
Berenger's perfectly matched layer method [32]. 

TABLE 1. Exponential decay of the error |UL-UE/|UE (dB) with 
respect to L 

L h = r/16 h= -7r/32 h = 7r/48 
0 -21.7 -23.1 -23.6 
7r/4 -42.7 -43.9 -44.4 
7r/2 -48.7 -63.1 -66.3 
37r/4 -53.8 -75.8 -85.7 
7r -62.2 -67.3 -72.6 
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FIGURE 2. Isovalues curves of lui for L-0, L =ir/2 and L =7 

5.3.2. A second example. The second example consists of a two-dimensional infinite 
waveguide Q' = Rx ]O, 7r[, again with a homogeneous Neumann boundary condi- 
tion. The eigenvalues are the same as in the previous example. Now we consider 
four propagating modes corresponding to k = 3.3. Two cross-sections are fixed to 
limit the waveguide: 

So {O}x ]O, ir[ and S,r = {l}x ]0, 7r[. 

The waveguide is fed on the interface So by the first four modes c+, n = 1, 2, 3, 4, 
one by one. The energy of each mode reflected by the opposite section is given in 
tables 2 and 3 corresponding to the successive mesh lengths h = 7r/10, 7r/20, 7r/40 
and w/80. These tables demonstrate the stability of the quasi-local formulation. 
The low-level energy of the reflected modes gives an indication of the great accuracy 
reached by this method. 

TABLE 2. Reflected energy, h -r/10 and h = 7r/20 

Incident wave + + 4 + Incident wave |+ E4 4+ 64 
ul I (dB) -32 -oc -53 -oo u 1 (dB) -41 -280 -72 -0o 
u2 12 (dB) -280 -42 -oc -38 U- 12 (dB) -268 -49 -oo -57 
u- 12 (dB) -49 -oo -23 -oc U-a12 (dB) -69 -274 -35 -280 

u-12 (dB) -280 -43 -oo -11 u-12 (dB) -258 -62 -268 -22 



142 A. BENDALI AND PH. GUILLAUME 

TABLE 3. Reflected energy, h = 7r/40 and h = 7r/80 

Incident wave E+ 6+ E+ + Incident wave + E+ + 6+ 
u- | (dB) -53 -270 -91 -280 lU | (dB) -65 -256 -110 -268 
u2-12 (dB) -258 -59 -274 -76 uj-12 (dB) -242 -71 -261 -94 
u- 12 (dB) -88 -264 -48 -266 u- 12 (dB) -106 -253 -60 -257 
u- 12 (dB) -253 -81 -256 -33 U4 12 (dB) -238 -99 -250 -46 

5.3.3. A third example. The two examples above are based on the boundary condi- 
tion analyzed in this paper. The rational function R interpolates the N real values 
kn at the N points An2 1 < n < N. The function R is real and satisfies the as- 
sumption R(An )2 > 0 for n > 1. However, it seems that the later assumption is 
unnecessary, and only the interpolation of the constants of propagation kn is im- 
portant in the approximation process, even if some of these constants are complex. 
The following example gives an illustration of this fact. 

We use here the semi-infinite waveguide described in the first example in the 
case of one propagating mode: k = 0.5. We have tested the four different boundary 
conditions 

aOnu-T.u = 0, 1 <j <4, 

corresponding to the four functions Rj(t), 1 < j < 4, respectively defined by 

R1 (t) = I 
R2(t) = a2t +b2, 

R3(t) = a3t+b3+ 

R4(t) = a4t+b4+ 
C4 

+ 2+t' 

where the coefficients aj, bj, cj, dj are chosen so that Rj (A) = kn, 1 < n < j < 4. 
The first function leads to the well-known boundary condition aOu - ik1 u = 0, ex- 
tensively used in electromagnetic calculations [21]. Except for this one, since Rj(t) 
is not a real-valued function for j > 2, the theoretical results of this paper cannot 
be applied to ensure convergence of the finite-element scheme. However, taking 
into account evanescent modes in the formulation leads to accurate results even 
when only a small part of the waveguide is included in the domain of computation. 
Tables 4 and 5 show the results that are obtained, with the same notation as in 
table 1. Column j corresponds to the boundary condition aOu - Tju = 0. 

TABLE 4. Error JUL - UEF/|UE in dB, comparison of the four 

boundary conditions 

L T1 T2 T3 T4 L T1 T2 T3 T4 
0 -28.4 -37.3 -56.0 -55.1 0 -33.4 -41.7 -67.0 -71.8 

7r/4 -53.4 -63.2 -64.9 -64.9 7r/4 -59.1 -67.8 -74.4 -74.4 

r/2 -64.1 -64.2 -64.2 -64.2 7r/2 -73.9 -74.1 -74.0 -74.0 
37r/4 -66.3 -66.3 -66.3 -66.3 37r/4 -76.9 -76.9 -76.9 -76.9 
Xr -72.1 -72.1 -72.1 -72.1 Xr -85.1 -85.1 -85.1 -85.1 

(h = 7/8) (h = r/16) 
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TABLE 5. Error JUL - UEF/|UE in dB, comparison of the four 

boundary conditions 

L T1 T2 T3 T4 L T1 T2 T3 T4 
0 -35.6 -43.9 -72.1 -84.6 0 -36.4 -44.7 -73.6 -88.3 
7r/4 -61.8 -70.3 -86.1 -86.0 7r/4 -62.7 -71.1 -93.1 -93.1 
7r/2 -85.5 -85.9 -85.9 -85.8 7r/2 -88.9 -93.0 -92.9 -92.9 
37r/4 -89.4 -89.4 -89.4 -89.4 37r/4 -96.8 -96.8 -96.8 -96.8 
Xr -101.3 -101.3 -101.3 -101.3 Xr -111.4 -111.4 -111.4 -111.4 

(h = r/32) (h = 7r/48) 

Of particular interest is the second condition au - T2u = 0. This condition is 
completely local, hence very easy to implement on an existing code based on the first 
usual condition. The improvement is then of about 10 dB when the cross-section 
SL is near to the source. 

It is worth noting that when the cross-section SL is far from the source (last 
lines of the tables), the four boundary conditions give the same results. 

6. FINAL COMMENTS 

The same technique can be applied to the three-dimensional Maxwell equations 
and will be presented in a forthcoming paper. It would be interesting to apply 
the quasi-local boundary condition to the time-domain formulations of waveguide 
problems. 
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